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Stochastic integrability and the KPZ equation
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As a common experience from basic courses in Classical Mechanics, for some mechanical
systems the equations of motion can be solved up to quadratures, while others persist to
deny such access. This experience can be formalized and leads to the notion of an inte-
grable system. For a Hamiltonian system with n degrees of freedom, one requires to have
at least n functions on phase space, Hj , j = 1, . . . , n, which are in involution meaning
that the Poisson brackets {Hi, Hj} = 0 for i, j = 1, . . . , n, see [1] for details. H1, say, is
the system’s Hamiltonian. Then the manifold {Hj = cj, j = 1, . . . , n} has the structure
of an n-torus and the motion is characterized by at most n frequencies. Hence, up to
deformation, the motion looks like the well-known Lissajous figures.

The text book example is the motion of a particle subject to a central potential. More
spectacular is the observation that integrability persists for particular systems with a
large number of degrees of freedom, which first surfaced indirectly through the discovery
of solitary wave solutions by N.J. Zabusky and M.D. Kruskal [2] for the Korteweg-de-Vries
equation in one dimension and for a chain of nonlinear coupled oscillators by M. Toda
[3]. A very rich field ensued. In the following my focus will be on the aspect of many
interacting components.

Naturally one may wonder how integrability survives under quantization. An Hamilto-
nian operator, H , allows for many commuting operators. Thus a simple minded extension
from the classical case will not do and there seems to be no generally agreed upon defi-
nition of quantum integrability. On the other side there are clear signatures to identify a
quantum integrable system (once it is found), to name only a few: Bethe ansatz, Yang-
Baxter equation, and factorized S-matrix.

From the perspective of statistical mechanics it is also a natural issue to understand
whether and how integrability extends to stochastic systems. To have one distinction
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very clear, many systems of 2D equilibrium statistical mechanics are integrable, the cor-
respondence being related to the fact that the transfer matrix has a structure akin to a
quantum integrable system. In contrast, here I discuss stochastic time evolutions mod-
eled as a Markov process, either diffusion or jump. As a linear operator, the generator,
L, of the Markov process has possibly some structural similarity to −H , hence it seems
reasonable to expect a corresponding version of integrability. On the other side, eLt is
already the normalized transition probability; there are no probability amplitudes, the
partition function equals 1, and the largest real part of the eigenvalues is 0.

With R. Dobrushin the Russian probability school pioneered the many component
aspect. Integrability is usually first associated with R. Glauber’s exact solution of the
one-dimensional stochastic Ising model [4]. This solution is based on what is now called
duality, a concept introduced and generalized to other systems by F. Spitzer in the very
influential article [5]. The dual description is here in terms of evolution equations for
the time-dependent correlations functions, which decouple for integrable systems. An
example is the symmetric simple exclusion process on the one-dimensional lattice Z. In
this model there is at most one particle per site and, under this restriction, particles
perform independently nearest neighbor symmetric random walks. The generator L equals
−H with H the Hamiltonian of the ferromagnetic Heisenberg chain. (In this case, duality
holds in arbitrary dimension and also for longer ranged symmetric jumps.)

On the level of duality, none of the signatures known for quantum integrability make
their appearance. This situation changes drastically as we turn to the asymmetric version
of the simple exclusion process, ASEP (now 1D and n.n. do matter). A particle at site
j jumps to site j + 1 with rate p and to site j − 1 with rate q, q + p = 1, provided the
destination site happens to be empty. The symmetric case corresponds to q = p = 1

2
. The

generator can be written in the notation of quantum spin chains. If σz
j = 1 means site j

is occupied by a particle, then

L =
1

4

∑

j∈Z

(⇀
σ j ·

⇀
σ j+1 − 1 + 2i(p− q)(σx

j σ
y
j+1 − σy

jσ
x
j+1)

)

. (1)

Note that L is not symmetric. All eigenvalues are in the open left hand plane except for
0. On a ring with a fixed number of particles, the unique invariant measure is the uniform
distribution. The other eigenvectors are determined through the Bethe ansatz [6]. Much
more powerful is the Bethe ansatz inspired expression for the transition probability eLt

discovered by C. Tracy an H. Widom [7]. Their expression is still extremely complicated
and to simplify further one has to specify some initial conditions. A widely studied choice
is the initial step, for which the half lattice {j ≤ 0} is empty and {j ≥ 1} occupied. For
q > p Tracy and Widom write a Fredholm determinant for the probability distribution of
xj(t), the position of the j-th particle at time t. Much earlier K. Johansson [8] found a
distinct Fredholm determinant for a related quantity in the totally asymmetric limit q = 1
(TASEP). Both results serve as the stepping stone for an intricate asymptotic analysis
eventually arriving at objects familiar from random matrix theory.

Very recently one accomplished to cross the border from discrete jump processes to a
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particular stochastic PDE, which reads

∂

∂t
h =

1

2

( ∂

∂x
h
)2

+
1

2

∂2

∂x2
h+W , x ∈ R , t ≥ 0 , (2)

and is the 1D version of the equation first proposed by Kardar, Parisi, and Zhang [9] as
a model for growing interfaces. Here h(x, t) is viewed as a height function and W (x, t) is
white noise in space-time. Integrability is seen most explicitly for the sharp wedge initial
condition,

h(x, 0) = −1

δ
|x| with δ → 0 , (3)

which, at δ = 1, should be understood as the analogue of the once integrated initial step.
(2) together with (3) looks very singular, and it is. For smooth initial data the solution
is constructed by L. Bertini and G. Giacomin [10] and for the sharp wedge in [11].

The KPZ equation turns linear through the Cole-Hopf transformation

Z = eh . (4)

Then
∂

∂t
Z =

1

2

∂2

∂x2
Z +WZ , Z(x, 0) = δ(x) , (5)

from which one concludes that the exponential moments of h are linked to the attractive
δ-Bose gas in one dimension, which is a quantum integrable system solvable through the
Bethe ansatz. For example, for (2) together with (3) it holds

E(Z(0, t)n) = 〈0|e−tHn |0〉 (6)

with Hn the n particle attractive Lieb-Liniger hamiltonian,

Hn = −1

2

n
∑

j=1

∂2

∂x2
j

− 1

2

n
∑

i 6=j=1

δ(xi − xj) , (7)

and |0〉 the state where all n quantum particles are at 0. Unfortunately, the moments
in (6) increase as exp(n3), which makes a rigorous control difficult. But replica schemes
have been employed and yield fascinating results [12, 13, 14, 15, 16].

Currently the integrability of the KPZ equation can be deduced only indirectly by
taking a continuum limit of the asymmetric simple exclusion process, where the lattice
spacing is ε, the time scale ε−2, and the asymmetry q − p =

√
ε with ε ≪ 1. To give an

impression, I record the generating function for the height at the origin at time t,

E
(

exp
[

− e−seh(t)+(t/24)
])

= det(1− P0Ks,tP0) . (8)

Here the determinant is in L2(R), P0 projects onto [0,∞), and Ks,t is an operator with
integral kernel

Ks,t(x, y) =

∫

R

(

1 + e−(t/2)1/3λ+s
)−1

Ai(x+ λ)Ai(y + λ)dλ (9)
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with Ai the Airy function. P0Ks,tP0 is of trace-class. For large t, h(t) ∼= −t/24 +
(t/2)1/3ξ, where the random amplitude ξ is Tracy-Widom distributed, just as is the largest
eigenvalue of a GUE random matrix in the large N limit. (8) together with (9) was
obtained independently in [11, 17, 18]. In this context the introductory review [19] is
highly recommended with some complementary information provided in [20].

The integrability of the KPZ equation triggered further advances. One interesting
direction is to consider discretized versions of the stochastic heat equation (5). Somewhat
unexpectedly, the completely asymmetric discretization turns out to be more tractable
and one starts from the equations of motion

d

dt
Zj(t) = Zj−1(t)− Zj(t) +

(

d
dt
bj(t)

)

Zj(t) , Zj(0) = δj0 , j ∈ Z , (10)

where {bj(t), j ∈ Z} is a collection of independent, standard Brownian motions. N.
O’Connell [21] established a close connection between logZn(t) and the last particle in
the open quantum Toda chain of n sites. Very recently A. Borodin and I. Corwin [22]
explain how Macdonald functions enter the picture. They are the eigenfunctions of the
commuting set of Macdonald operators. In the future, for sure, the interface between
stochastic and quantum integrability will be further elucidated.

While we emphasized the notion of integrability, let me add as a fairly extended foot-
note that the predictions based on the exact solutions have been confirmed recently in
spectacular experiments [23], see also the expository article [24]. Of course, physical sys-
tems are much more complex than simple models as the TASEP. But on a large space-time
scale microscopic details hardly matter, except for generic properties, like the condition
of a sufficiently local update rule. In fact, such universal behavior can be proved for
the integrable models discussed, but it should hold at much greater generality, including
physical systems. In the experiment [23] one studies droplet growth in a thin film of
turbulent liquid crystal. The film thickness is 12 µm, while the droplet grows laterally to
a size of several mm. The droplet consists of the stable DSM2 phase and is embedded in
the metastable DSM1 phase. Hence the interface is a line and it advances through nu-
cleation events where the stable phase is created out of the metastable one. On average,
the solution to the KPZ equation with sharp wedge initial data has a parabolic profile
which self-similarly widens linearly in t and thus models one section of the droplet. By the
physical conditions, the droplet growth is isotropic guaranteeing that the non-universal
coefficients do not depend on the direction of growth, which is the basis for high precision
sampling of entire probability density functions. In fact, the GUE Tracy-Widom distri-
bution for the height fluctuations is confirmed with accuracy. It is also observed that
for flat initial conditions, h(x, 0) = 0, the height fluctuations switch from GUE to GOE
statistics, implying that some features of the initial conditions are still visible in the large
scale universal limit.
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